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Abstract
Low rank matrix recovery is a fundamental task
in many real-world applications. The perfor-
mance of existing methods, however, deteriorates
significantly when applied to ill-conditioned or
large-scale matrices. In this paper, we therefore
propose an efficient method, called Riemannian
Pursuit (RP), that aims to address these two prob-
lems simultaneously. Our method consists of
a sequence of fixed-rank optimization problems.
Each subproblem, solved by a nonlinear Rieman-
nian conjugate gradient method, aims to correct
the solution in the most important subspace of
increasing size. Theoretically, RP converges lin-
early under mild conditions and experimental re-
sults show that it substantially outperforms ex-
isting methods when applied to large-scale and
ill-conditioned matrices.

1. Introduction
Matrix recovery (MR) has attracted a lot of attention from
various research communities, such as statistical machine
learning, collaborative filtering, image and signal process-
ing (Candès & Recht, 2009; Negahban & Wainwright,
2012). With the fast development of Web 2.0 in the last
decade, big MR problems have been widely involved in
many practical applications, leading to great challenges in
computation. For instance, in collaborative filtering tasks,
the Netflix Prize problem involves 108 ratings of 480,189
users on 17,770 movies (KDDCup, 2007). The MR prob-
lem is defined as follows:
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Definition 1. Given a linear operatorA : Rm×n → Rl, let
b = A(X̂) + e be l linear measurements of an unknown
rank-r̂ matrix X̂ ∈ Rm×n, where e denotes noise. Then
the task of MR is to recover X̂ by solving

min
X

f(X), s.t. rank(X) ≤ r, (1)

where l� mn, r ≥ r̂, and f(X) = 1
2‖b−A(X)‖22.

The definition of A depends on the application context,
such as matrix completion, quantum state tomography, ma-
trix factorizations; see, e.g., (Recht et al., 2010; Candès &
Plan, 2010a; Recht, 2011; Keshavan et al., 2010b; Laue,
2012). Although our derivation is valid for any A that al-
lows for MR, in the numerical experiments, we will focus
on matrix completion (MC) as a specific application. In this
case, A(X) is defined as the element-wise restriction of X
on Ξ, a subset of the complete set of entries of X.

Problem (1) is known to be NP-hard. To address it, many
researchers proposed to solve the nuclear-norm convex re-
laxation (Fazel, 2002; Hazan, 2008; Recht et al., 2010):
minX ‖X‖∗, s.t. A(X) = b, where ‖ · ‖∗ denotes the
matrix nuclear norm. A number of algorithms have been
proposed to solve this relaxation, such as the singular value
thresholding (SVT) (Cai et al., 2010), the augmented La-
grangian method (ALM) (Lin et al., 2010; 2011; Yang &
Yuan, 2013). In practice, the following matrix lasso prob-
lem is also often studied (Toh & Yun, 2010): minX

1
2‖b−

A(X)‖22 + λ‖X‖∗, where λ is a regularization parameter.
Regarding this problem, the accelerated proximal gradi-
ent (APG) method has been proven to be effective (Toh &
Yun, 2010; Mishra et al., 2013). While nuclear-norm based
methods have shown some success in practice, their appli-
cability to large-scale problems is rather limited because
of their necessity to compute high-dimensional SVDs. Re-
cently, Mishra et al. (2013) proposed a method to solve the
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matrix lasso problem by avoiding high-dimensional SVDs.
However, empirically, this method still performs similarly
to APG.

To improve the scalability of MR, a different solution is
to relax problem (1) to a fixed-rank optimization prob-
lem (Mitra et al., 2010; Keshavan et al., 2010a):

min
X

f(X), s.t. rank(X) = r, (2)

where r is an estimated rank. This problem is non-
convex, but it can be solved efficiently by local-search
methods. Particularly, since the fixed-rank matrices belong
to a smooth matrix manifold, many efficient methods based
on manifold optimization have been proposed (Meyer et al.,
2011; Boumal & Absil, 2012; Vandereycken, 2013).

By exploiting the smooth geometry of fixed-rank matrices,
fixed-rank based methods have shown superior scalability
compared with the nuclear-norm based methods (Boumal
& Absil, 2012; Mishra et al., 2012; Vandereycken, 2013).
However, there are two deficiencies for the existing fixed-
rank methods. Firstly, since the ground-truth rank of the
matrix to be recovered is usually unknown, it is nontrivial
to set the value of r in (2). Secondly, as observed in (Ngo
& Saad, 2012; Boumal & Absil, 2012), when solving (2)
with ill-conditioned X̂, existing fixed-rank based methods
may converge slowly.

To address the above issues, we develop an efficient and
scalable algorithm for MR that iteratively increases the
rank of the matrix to be recovered by a fixed integer ρ. The
main contributions of this paper are as follows:

1) We propose the Riemannian Pursuit (RP) method, which
essentially solves a sequence of fixed-rank minimization
problems using a nonlinear Riemannian Conjugate Gradi-
ent (NRCG) method. The convergence of NRCG is guar-
anteed by the application of a strong Wolfe line search.

2) We prove that RP converges linearly under mild con-
ditions. Compared with other fixed-rank based methods,
the proposed optimization scheme can effectively address
the convergence issues that occur with ill-conditioned and
large rank problems.

3) RP automatically estimates the rank under proper stop-
ping conditions, which avoids the difficulty of the rank es-
timation in most existing fixed-rank based methods.

2. Notations and Preliminaries
Throughout the paper, we denote by the superscript T the
transpose of a vector/matrix, 0 a vector/matrix with all ze-
ros, diag(v) a diagonal matrix with a vector of diagonal
entries equal to v, and ‖v‖p the `p-norm of a vector v. We
denote by [n] the list {1, ..., n}. Given a linear operator
A, its adjoint operator is denoted by A∗. Let A � B and

〈A,B〉 = tr(ABT) be the element-wise product and in-
ner product of A and B, respectively. Denote the SVD of
X ∈ Rm×n as X = U(diag(σ))VT =

∑q
i=1 σiuiv

T
i ,

where q = min{m,n} and σi is arranged in descend-
ing order. The nuclear norm of X is defined as ‖X‖∗ =
‖σ‖1 =

∑
i |σi| and the Frobenius norm of X is defined as

‖X‖F = ‖σ‖2. The condition number κr(X) of X w.r.t. a
given number r is defined as κr(X) = σ1/σr.

2.1. Matrix RIP Condition

To discuss convergence, we introduce the matrix restricted
isometry property (RIP) condition (Recht et al., 2010).
Specifically, the matrix RIP condition describes a property
of a linear operator A as the smallest number γr such that

(1− γr)||X||2F ≤ ||A(X)||2F ≤ (1 + γr)||X||2F (3)

holds for all matrices of rank at most r. Observe that
the RIP condition does not hold for MC. To study the ex-
act recovery condition of MC, the incoherence of matri-
ces is introduced (Candès & Recht, 2009; Candès & Plan,
2010b). Specifically, a matrix X of rank r with SVD
X = Udiag(σ)VT is µ-incoherent (µ ≥ 1) if ∀i ∈ [r]

||ui||∞ ≤
√
µ/m and ||vi||∞ ≤

√
µ/n. (4)

Under these conditions, the RIP conditions of MR has been
extended to MC (Meka et al., 2009a).

Proposition 1. In MC, suppose the observed entry set Ξ is
sampled according to the Bernoulli model with each entry
(i, j) ∈ Ξ being independently drawn from a probability p.
There exists a constant C > 0, for all γr ∈ (0, 1), µ ≥ 1,
n ≥ m ≥ 3, if p ≥ Cµ2r2 log(n)/(γ2

rm), the following
RIP condition holds

(1− γr)p||X||2F ≤ ||A(X)||2F ≤ (1 + γr)p||X||2F , (5)

for any µ-incoherent matrix X ∈ Rm×n of rank at most r
with probability at least 1− exp(−n log n).

2.2. Differential Geometry of Fixed-Rank Matrices

Given a positive integer r, consider the smooth submani-
fold of fixed rank-r matrices,

Mr = {X ∈ Rm×n : rank(X) = r}
= {Udiag(σ)VT : U ∈ Stmr ,V ∈ Stnr , ||σ||0 = r}

with Stmr = {U ∈ Rm×r : UTU = I} the Stiefel manifold
of m× r real and orthonormal matrices. The tangent space
TXMr ofMr at X = Udiag(σ)VT ∈ Rm×n is given by
TXMr = {UMVT+UpV

T+UVT
p : M ∈ Rr×r,Up ∈

Rm×r,UT
pU = 0,Vp ∈ Rn×r,VT

pV = 0}.
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Define a metric gX(A,B) = 〈A,B〉, where X ∈ Mr

and A,B ∈ TXMr, then Mr is a Riemannian manifold
by restricting 〈A,B〉 to the tangent bundle. Here the tan-
gent bundle is defined as the disjoint union of all tangent
spaces TMr =

⋃
X∈Mr

{X} × TXMr = {(X,E) ∈
Rm×n × Rm×n : X ∈ Mr,E ∈ TXMr}. By restrict-
ing f(X) = 1

2‖b − A(X)‖22 to Mr we obtain a smooth
function on Mr. Its Riemannian gradient is given as the
orthogonal projection onto the tangent space of the gradi-
ent of f . Define PU = UUT and P⊥U = I−UUT for any
U ∈ Stmr . The orthogonal projection of any Z ∈ Rm×n
onto the tangent space at X = Udiag(σ)VT is defined as

PTXMr (Z) : Z 7→ PUZPV + P⊥U ZPV + PUZP
⊥
V . (6)

Let G = A∗(A(X) − b). Then, the Riemannian gradient
of f(X) onMr can be calculated as

gradf(X) = PTXMr
(G). (7)

For convenience, we define PT0Mr (Z) = 0 when X = 0.
Moreover, the Retraction mapping on Mr is to go back
from an element in the tangent space to the manifold, which
can be computed in a closed form as

RX(E) = PMr (X+E) =

r∑
i=1

σipiq
T
i , (8)

where
∑r
i=1 σipiq

T
i denotes a best rank-r approximation

to X + E. The norm of a tangent vector ζX ∈ TXMr

evaluated at X is defined as ||ζX|| =
√
〈ζX, ζX〉. We

refer to (Vandereycken, 2013) and references therein for
more details on the geometry ofMr.

3. Riemannian Pursuit
Solving problem (1) is hard because there is little knowl-
edge about the rank of the matrix to be recovered; other-
wise (1) is reduced to a fixed-rank minimization problem.
Considering that fixed-rank methods have gained great suc-
cess in solving big MR problems with explicit knowledge
of the rank, we propose to iteratively increase the rank by
a fixed integer ρ and then solve a series of fixed-rank min-
imization subproblems until a proper stopping condition is
achieved. Once this procedure is finished, the final rank
returned is our rank estimation and we can perform a fi-
nal, more accurate fixed-rank optimization step. Based on
this motivation, the proposed method is presented in Algo-
rithm 1. Since Riemannian optimization is a core element
of the algorithm, we refer to it as the Riemannian Pursuit
(RP) in the sequel. The parameter ρ in RP is crucial for
both rank estimation and convergence. For ease of pre-
sentation, we leave the detailed setting of choosing ρ for
Section 3.2.

As shown in Algorithm 1, ξt = b −A(Xt) represents the
residual at iteration t. Starting with X0 = 0, RP iterates

with two main steps: 1) identifying the most-active sub-
space through an active-subspace search in Step 2; and 2)
solving a master problem optimization regarding a fixed-
rank minimization problem in Step 3. In Algorithm 1 and
in the rest of the paper, we use the notation

Pt := PTXtMtρ
.

The parameter εout is a tolerance on the stopping condition
of Algorithm 1 and will be detailed in Section 3.1.

Algorithm 1 RP: Riemannian Pursuit for MR.
Require: Rank increase ρ. Inner and outer iteration toler-

ance εin and εout.

1: Initialize X0 = 0, ξ0 = b, G = A∗(ξ0), and t = 1.

2: Perform an active-subspace search as follows.
2a: Compute Q = G− Pt−1(G).
2b: Compute a best rank ρ approximation of Q:

Ht−1
2 = Uρdiag(σρ)VT

ρ

3: Let Ht−1
1 = Pt−1(G) and Ht−1 = Ht−1

1 + Ht−1
2 .

3a: Choose a proper step size τt from (10) and set

Xintial = RXt−1(−τtHt−1). (Warm Start)

3b: Using Xinitial as initial guess, call

Xt = NRCG(Xinitial, εin).

4: Update ξt = b−A(Xt) and G = A∗(ξt).

5: Quit if stopping condition on εout is achieved; other-
wise, let t := t+ 1 and go to Step 2.

In Step 2, the active-subspace search determines the most-
active subspace that is orthogonal to Xt−1 from G =
A∗(ξt−1). Such a subspace is obtained by computing the
top ρ singular values and vectors of G − Pt−1(G), which
is orthogonal to TXt−1M(t−1)ρ and thus also to Xt−1. Re-
mark that, due to computational reasons, the master prob-
lem in step 3b is not solved exactly, thus Pt−1(G) is not
necessarily zero (or negligible).

After the active-subspace search, we have rank(Xt) = tρ,
namely Xt ∈ Mtρ. The master problem optimization in
Step 3 is to solve a fixed-rank problem

min
X

f(X), s.t. rank(X) = tρ, (9)

where f(X) = 1
2 ||A(X) − b||22 is a smooth function. In

particular, we solve it using LRGeomCG from (Vanderey-
cken, 2013), which is a nonlinear Riemannian Conjugate
Gradient (NRCG) method.

As shown in Algorithm 1, NRCG involves two parameters,
namely the initial point Xintial and its stopping tolerance
εin. Here, Xintial of rank tρ in Step (3a) is used as a warm-
start in NRCG, which is important for improving the over-
all efficiency of the algorithm. To be more specific, we use
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RXt−1(−τtHt−1) as an initial point for NRCG, where τt is
a step size that is obtained by a line search on the condition

f(RXt−1(−τtHt−1)) ≤ f(Xt−1)− τt
2
〈Ht−1,Ht−1〉. (10)

Main Theoretical Results: Before presenting the details
of NRCG, we summarize two major theoretical results re-
garding the convergence of Algorithm 1.

Firstly, let {Xt} be the sequence generated by RP, then
f(Xt) decreases monotonically w.r.t. t.
Lemma 1. Let {Xt} be the sequence generated by RP, then

f(Xt) ≤ f(Xt−1)− τt
2
||Ht−1

2 ||2F , (11)

where τt satisfies condition (10).

Secondly, let X̂ be the ground-truth low-rank matrix and e
be the additive noise, the following theorem indicates that
f(Xt) decreases linearly when f(Xt) > f(X̂) = 1

2 ||e||
2.

Theorem 1. Let {Xt} be the sequence generated by RP
and ζ = min{τ1, · · · , τι}. As long as f(Xt) ≥ C

2 ||e||
2

(where C > 1) and if there exists an integer ι > 0 such
that γ(r̂+2ιρ) <

1
2 , then RP decreases linearly in objective

values when t < ι, namely f(Xt+1) ≤ νf(Xt), where

ν = 1− ρζ

2r̂

(
C(1− 2γ(r̂+2ιρ))

2

(
√
C + 1)2(1− γ(r̂+2ιρ))

)(
1− 1√

C

)2

.

This theorem illustrates the convergence speed of RP under
the RIP condition γ(r̂+2ιρ) <

1
2 . To apply it to the matrix

completion problem, we need to adapt a variant of the RIP
condition in (5) and assume that the Xt are incoherent, uni-
formly in t.

3.1. Stopping Conditions for RP

According to Lemma 1, RP monotonically decreases in
objective value. Without proper stopping conditions, RP
may increase the rank until tρ ≥ h = min(m,n), where
ξt = b−A(Xt) = 0, and the solution will likely be over-
fitted. To avoid this issue, one can terminate on a small
relative residual,

‖ξt‖F /||b||F ≤ λF . (12)

In real-world problems, the matrix to be recovered is not
exactly low-rank and then (12) may not be adequate. Since
RP decreases the objective values monotonically, we pro-
pose to use a difference in function values as the stopping
condition,

2(f(Xt−1)− f(Xt))/(ρ‖b‖2F ) ≤ εout,

where εout is a predefined tolerance value. This condition
is based on the assumption that over-fitting will happen if
increasing the rank does not significantly decrease the ob-
jective value. In practice, εout = 10−5 is usually a good
choice.

3.2. Parameter Selection on ρ

As shown in Theorem 1, RP with a larger ρ converges
faster. However, a small ρ is required in order to make
an accurate estimation to the rank. Particularly, when deal-
ing with problems of ill-conditioning, ρ should be small
enough. We present a simple and effective method to
set an appropriate ρ. Let σ be the singular vector of
A∗(b), where σi is arranged in descending order. Moti-
vated by the thresholding strategy in StOMP for sparse re-
covery (Donoho et al., 2012), we choose ρ such that for
0 < η ≤ 1

σi ≥ η σ1, ∀i ≤ ρ. (13)

In other words, ρ denotes the number of sufficiently large
singular values of A∗(b). In general, a smaller η leads to
a larger ρ. When setting η = 1, we trivially have ρ =
1, which is not efficient when the exact rank r̂ is large.1

We refer to the Supplementary Materials for an efficient
computational strategy to compute ρ given η.

3.3. Nonlinear Riemannian Conjugate Gradient

In this section, we detail the NRCG method for solving the
fixed-rank problem (9) in Step 3b of RP. To differentiate
from the outer iteration variable Xt of RP, we use Xk for
the inner iteration index k of NRCG. In Euclidean space,
the search direction ζk of nonlinear CG is calculated as

ζk = −gradf(Xk) + βkζk−1,

where βk is calculated from, for example, the Fletcher–
Reeves (FR) rule:

βt =
〈gradf(Xk), gradf(Xk)〉

〈gradf(Xk−1), gradf(Xk−1)〉
. (14)

Different from Euclidean space, the search direction on a
manifold are adapted to follow a path on the manifold (Ab-
sil et al., 2008). Particularly, since gradf(Xk) ∈ TXk

Mr,
gradf(Xk−1) ∈ TXk−1

Mr, and ζk−1 are in different tan-
gent spaces of the manifold, the above two equations are
not applicable on Riemannian manifolds. To extend nonlin-
ear CG of Euclidean space to Riemannian manifolds, two
additional operators, namely retraction and vector trans-
port are necessary. With the previously defined retraction
mapping in (8), one can move points towards the direction
of a tangent vector and make them stay on the manifold. A
vector transport T on a manifoldMr is a smooth map that
transports tangent vectors from one tangent space to an-
other (Absil et al., 2008). Denoting such a vector transport
by TX→Y : TXMr → TYMr, the conjugate direction can
be calculated as

ζk = −Ek + βtTXk−1→Xk (ζk−1), (15)

1In practice, we suggest setting η ≥ 0.60.
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where Ek = gradf(Xk) and βk is determined from (14).

The NRCG method is presented in Algorithm 2, which in-
cludes two major steps: 1) calculating the conjugate search
direction in Step 3, and 2) updating Xk+1 by retraction,
namely Xk+1 = RXk

(θkζk), where θk denotes the step
size satisfying the strong Wolfe conditions. Specifically,
given a descent direction ζk ∈ TXk

Mr, θk is determined
such that

f(RXk (θkζk)) ≤ f(Xk) + c1θk〈gradf(Xk), ζk〉, (16)

|〈gradf(RXk (θkζk)), TXk−1→Xk (ζk)〉|
≤ c2|〈gradf(Xk), ζk〉|, (17)

where 0 < c1 < c2 < 1/2.

Two choices for vector transport are orthogonal projection

TX→Y(ζ) = PTYMr (ζ) (18)

and the scaled differentiated retraction

TX→Y(ζ) = α · d
dt

RX(ν + tζ)|t=0 , (19)

where ν = R−1
X (Y) and α is such that ‖TX→Y(ζ)‖F =

‖ζ‖F ; see (Sato & Iwai, 2013).

The standard choice (18) from (Vandereycken, 2013) is
cheaper to evaluate, but (19) is required for proving the
convergence of NRCG.

Proposition 2 (Sato & Iwai (2013)). Given the retraction
(8) and vector transport (19) on Mr, there exists a step
size θk that satisfies the strong Wolfe conditions (16) and
(17).

Lemma 2 (Sato & Iwai (2013)). The search direction ζk
generated by NRCG using the vector transport (19) and
the strong Wolfe conditions (16) and (17) satisfies

− 1

1− c2
≤ 〈gradf(Xk), ζk〉
〈gradf(Xk−1), gradf(Xk−1)〉

≤ 2c2 − 1

1− c2
. (20)

Using (Dieci & Eirola, 1999), (19) can be implemented ef-
ficiently even though it will be more expensive than (18).
One can show that the difference between (18) and (19) is
O(‖ζ‖2), hence they have the same behavior near the opti-
mizer where ‖ζ‖ → 0. For convenience, we therefore use
(18) in the numerical experiments.

Global convergence of NCRG is obtained if the func-
tions f(RXk

(θζk)) are Lipschitz continuously differen-
tiable in θ. Since the manifoldMtρ is open at points where
rank(X) < tρ, such a condition cannot hold uniformly
on Mtρ. In (Vandereycken, 2013), the additional term
1
2µ

2(||X†||2F + ||X||2F ) was added to the objective function
to penalize rank drops. For simplicity, we assume that f
satisfies the necessary Lipschitz conditions throughout the
iteration.

Assumption 1. Let {Xk} and {ζk} be the sequence of iter-
ates and search directions generated by the NRCG method
in Step (3b). We assume that θ 7→ f(RXk

(θζk)) is Lip-
schitz continuously differentiable with a uniform Lipschitz
constant L > 0.

Theorem 2. Let {Xk} be the sequence generated by the
NRCG method in Step (3b) of Algorithm 1 with the strong
Wolfe line search, where 0 < c1 < c2 < 1/2, then we have
limk→∞ inf gradf(Xk) = 0.

Proof : Combining Lemma 2 and Assumption 1 as in (Sato
& Iwai, 2013).

Algorithm 2 NRCG(Xintial,r, εin) for solving (2).
1: Initialize X1 = Xintial and ζ0 = 0. Let k = 1.
2: Compute the gradient Ek = gradf(Xk) by (7).
3: Compute a conjugate direction ζk according to (15).
4: Choose a step size θk satisfying the strong Wolfe con-

ditions (16) and (17), and set Xk+1 = RXk
(θkζk).

5: Terminate and output Xk+1 if the stopping conditions
are achieved; otherwise, let k = k+ 1 and go to step 1.

3.4. Computational Advantages of RP

The proposed RP algorithm has several computational ad-
vantages. First of all, it is useful for rank detection. Specif-
ically, under the stopping conditions in Section 3.1, RP will
automatically estimate the rank as r = tρ.

Secondly, RP converges well on ill-conditioned problems.
Even when the condition number κr(X) is very large,
κtρ(X) will be small for t small. Thus NCRG can con-
verge well and consequently, the total convergence of RP
is improved significantly.

Thirdly, RP has good scaling characteristics for solving
large-scale problems. For example, the only SVD calcula-
tions required are the best rank tρ approximation of Xt+ξ
for the retraction and the best rank ρ of the matrix Q in
Step 2b. In all cases, the matrices involved are highly struc-
tured. Specifically, Xk + θkζk is a rank 2tρ matrix, and
thus the full SVD can be computed very efficiently; see
(Vandereycken, 2013). For Q = G − Pt(G), we can use
PROPACK (Larsen, 2004) or randomized low-rank approx-
imation (Halko et al., 2011) at a cost of O((|G| + tρn)ρ)
where |G| is the cost of one matrix-vector product with G.
For example, |G| = O(r̂n log2 n) is highly sparse for MC.

Finally, thanks to the warm-start, each application of
NRCG requires only a few iterations to achieve a suffi-
ciently accurate solution.
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4. Related Studies
Fixed-rank methods such as the low-rank geometric conju-
gate gradient method (LRGeomCG) (Vandereycken, 2013),
the quotient geometric matrix completion method (qGe-
omMC) (Mishra et al., 2012), and the method of scaled
gradients on Grassmann manifolds for matrix completion
(ScGrassMC) (Ngo & Saad, 2012), have shown promis-
ing performance. Gradient methods and stochastic gra-
dient methods have been developed to address the fixed-
rank problems (Jaggi & Sulovsky, 2010; Wen et al., 2012).
All these methods require the estimate of r. Greedy-
like algorithms have also been proposed to solve the
fixed-rank problem, such as the Singular Value Projec-
tion (SVP) (Meka et al., 2009b), Atomic Decomposition
for Minimum Rank Approximation (ADMiRA) (Lee &
Bresler, 2010), SpaRCS (Waters et al., 2011), and so on.
For these methods, they are guaranteed to converge under
restricted conditions.

Shwartz et al. (2011) proposed a Greedy Efficient Com-
ponent Optimization (GECO) algorithm to solve a convex
relaxation of the rank-constrained problem by iteratively
increasing the rank by 1. Jaggi & Sulovsky (2010) pro-
posed a new approximation algorithm based on a sparse
approximate SDP model (Hazan, 2008). Laue (2012) pro-
posed a hybrid strategy to solve the MR problem by itera-
tively increases the rank by 1. Different from these meth-
ods, RP essentially solves a sequence of fixed-rank meth-
ods and incrementally increases the rank by ρ ≥ 1. In
practice, it is crucial to use a large ρ to accelerate the con-
vergence speed on big matrices of large ranks. Moreover,
unlike RP, GECO solves much more expensive regression
subproblems; Laue’s method solves the nonlinear master
problems with a BFGS method, which is memory ineffi-
cient on large-scale problems. Finally, the importance of
stopping conditions for rank estimation is absent in these
methods.

5. Numerical Experiments
5.1. Baseline Methods and Performance Matric

Following state-of-the-art methods are adopted as base-
line methods: SVP (Meka et al., 2009b), APG (Toh &
Yun, 2010) (which uses a homotopy strategy to solve
the matrix lasso problem), GECO (Shwartz et al., 2011),
LMaFit (Wen et al., 2012), LMaFit-A (Wen et al., 2012)
(which extends LMaFit by automatically estimating the
rank). ScGrassMC (Ngo & Saad, 2012), a fixed-rank
method which is claimed to alleviate the convergence issue
over ill-conditioning problems. LRGeomCG (Vanderey-
cken, 2013), a fixed-rank method that adopts the nonlinear
Riemannian Conjugate Descent method with Armijo line
search. qGeomMC, a fixed-rank method based on mani-
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Figure 1. Convergence of comparison methods on sg and sχ2 ,
where ζos = 3 and r̂ = 50. GECO cannot converge within 1
hour on sg , and we omit its results on sχ2 . ScGrassMC gets nu-
merical problems after 50 iterations on sχ2 .

fold optimization. 2 Note that some related methods, such
as the IALM and OptSpace are not considered as baselines
in this paper since the adopted baseline methods above have
been shown to be state-of-the-art in MR (Wen et al., 2012;
Vandereycken, 2013). For RP, we adopt the stopping crite-
ria discussed in Section 3.1.

The relative testing error (RTE) is adopted as the
comparison metric in synthetic experiments: RTE =
‖PΞ(X̂ − X∗)‖F /‖X∗Ξ‖F . The testing root-mean-square
error (RMSE) is used as the comparison metric in real-
world applications: RMSE = ‖PΞ(X̂ − X∗)‖F /

√
(|Ξ|).

Here X̂ denotes the observed matrix (with missing entries
filled with ‘0’), X∗ denotes the recovered matrix, and Ξ
denotes the index set of observed entries.

All the experiments (except for GECO) are conducted in
Matlab on a PC installed a 64-bit operating system with
an Intel(R) Core(TM) i7 CPU (2.80GHz with single-thread
mode) and 24GB memory.

5.2. Synthetic Problem Generation

In synthetic experiments, we focus on matrices with
large condition numbers. Following (Ngo & Saad,
2012), we generate ground-truth low-rank matrices X̂ =
Ûdiag(σ̂)V̂T + e, where σ is a r̂-sparse vector, Û ∈ Stmr ,
and V̂ ∈ Stnr . Two types of singular values are studied: 1)
Gaussian sparse singular value sg with each nonzero entry

2LMaFit, ScGrassMC, qGeomMC and LRGeomCG
are from: http://www.montefiore.ulg.ac.
be/˜mishra/fixedrank/fixedrank.html;
APG, SVP and GECO are from: http://www.
math.nus.edu.sg/˜mattohkc/NNLS.html,
http://www.cs.utexas.edu/˜pjain/svp/,
www.cs.huji.ac.il/˜shais/code/index.html,
respectively.

http://www.montefiore.ulg.ac.be/~mishra/fixedrank/fixedrank.html
http://www.montefiore.ulg.ac.be/~mishra/fixedrank/fixedrank.html
http://www.math.nus.edu.sg/~mattohkc/NNLS.html
http://www.math.nus.edu.sg/~mattohkc/NNLS.html
http://www.cs.utexas.edu/~pjain/svp/
www.cs.huji.ac.il/~shais/code/index.html
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sampled from Gaussian distribution N(0, 1000), and 2) χ2

sparse singular values s2
χ, where each entry is the square

of sg . The two types of singular values are fast decaying,
and their condition numbers κr̂(X̂) are very large. Once X̂
is generated, we sample l = r(m + n − r) × ζos entries
from X̂ uniformly to produce b, where ζos is the oversam-
pling factor (Lin et al., 2010). In the noisy cases, each sam-
pled entry is disturbed by a Gaussian noise with strength
∆‖b‖2/‖n‖2, where ∆ is a strength factor and n ∈ Rl is
generated by n = randn(l, 1) in Matlab.

5.3. Performance Comparison in Noiseless Cases

We compare the convergence of RP on sg and sχ2 with
several baseline methods. To show the impact of η from
(13) (and thus ρ) on the convergence of RP, we test
η = 1.00, 0.75, 0.65, 0.55, respectively. For simplicity, we
set the rank parameter for the fixed-rank methods as the
ground-truth rank, namely, r = r̂ = 50, which is the best
choice for r in the noiseless case. The relative objective
value w.r.t. the computational time are shown in Fig. 1.
As can be seen from Fig. 1, RP with different η generally
converges faster than other methods on both types of ma-
trices. The reason that the other methods converge slowly
is due to the large condition numbers of sg and sχ2 . All the
above observations justify that RP can converge well on
ill-conditioned problems thanks to the reasons mentioned
in Section 3.4.

5.4. Performance Comparison in Noisy Cases

In this section, we study the performance of the comparison
methods on noisy problems of medium size (i.e., m=n=
5, 000). We report the training time and RTE of various
methods for comparison.

For medium-sized problems, we generate matrices with
the ground-truth rank r̂ = 50, and produce the observa-
tions with noise strength factor ∆ = 0.01 under oversam-
pling rates ζos ∈ {2, 2.3, 2.5, 2.8, 3.0, 3.3, 3.5, 3.8, 4.0}.
We compare RP with SVP, APG, LMaFit, LMaFit-A, qGe-
omMC and LRGeomCG. Note that LMaFit-A can automat-
ically adjust the rank. We set λF = 0.01, εout = 10−5 for
the stopping conditions and η = 0.65 for RP. For APG, we
set the trade-off parameter λ = 10−3σmax, where σmax is
the largest singular value of A∗(b). For all the fixed-rank
methods, we set r = r̂ = 50. We use default settings for
the other parameters of the baselines. For each oversam-
pling rate, we run 10 independent experiments. The Av-
eraged computational time, RTE and the estimated ranks
are shown in Fig. 2(a), Fig. 2(b) and Fig. 2(c), respectively.
From Fig. 2(a) and Fig. 2(b), under various oversampling
factors, RP generally shows the least relative testing error
and the best optimization efficiency among all methods.
More importantly, from Fig. 2(c), only RP can estimate the

Table 1. Averaged training time (seconds) on big matrices.
Data Type sg sχ2

r 50 100 50 100
LRGeomCG 316.8 992.2 564.3 1018.8
qGeomMC 216.1 1091.5 415.1 455.3

RP 57.5(48) 205.6(102) 75.4(48) 150.8(85)
* The number in bracket is the rank estimated by

RP. Note that LRGeomCG and qGeomMC use the
ground-truth rank (r = r̂).

target rank correctly under various oversampling factors;
while APG can only correctly detect the rank with enough
observations.

5.5. Performance Comparison on Big Matrices

In the experiments on large-scale matrix completion prob-
lems, we vary the values of r̂ in {50, 100}, and setm=n=
20, 000, ζos = 4 and ∆ = 0.05. Here, we only compare the
scalability of RP with that of LRGeomCG and qGeomMC
since there two methods have shown better efficiency than
other baselines. We set λF = 0.05, εout = 10−5 and
η = 0.65 for RP. To demonstrate the superiority of RP over
the baselines in terms of computational speed, we terminate
the baselines once they achieve the same objective value
of RP or a maximum of 400 iterations are achieved. In ad-
dition, we set r = r̂ for these two fixed-rank methods. The
other parameters are the same as those in the experiments
on the medium-sized problems.

We run 10 independent experiments and record the aver-
aged results for comparison. The averaged computational
time and RTE are listed in Table 1 and Table 2, respectively.
As can be found from Table 1, in general, the computa-
tional time of RP is 4 times faster than that of LRGeomCG,
and 3 times faster than that of qGeomMC, respectively. In
addition, as can be seen from Table 2, with the same train-
ing error, RP is also slightly better than the other two base-
line methods in terms of the relative testing error. Notice
that here we choose r = r̂ for LRGeomCG and qGeomMC,
which is the optimal choice for rank estimation.

Table 2. Averaged relative testing error on big matrices.
Data Type sg sχ2

r 50 100 50 100
LRGeomCG 0.0374 0.0388 0.074 0.0695
qGeomMC 0.0351 0.0316 0.120 0.0347

RP 0.0316 0.0306 0.031 0.0275

5.6. Real-World Experiments

In this section, we compare RP with the baseline meth-
ods on two real-world large-scale collaborative filter-
ing datasets: MovieLens with 10M ratings (denoted by
Movie-10M) (Herlocker et al., 1999) and Netflix Prize
dataset (KDDCup, 2007). Movie-10M contains 10M rat-
ings given by 71,567 users on 10,681 movies while Net-
flix Prize contains 100,480,507 ratings given by 480,189
users on 17,770 movies. The baseline methods include
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Figure 2. Comparison on medium-sized problems of rank r̂ = 50. The results are obtained by averaging over 10 independent trials.

APG, LRGeomCG, qGeomMC, Lmafit, Lmafit-A, GECO,
Jaggi’s method and Laue’s method.

In general, collaborative filtering data are very noisy. As a
result, the singular values of the matrices tend to be long-
tail. Therefore, we need to set larger stopping tolerances to
alleviate over-fitting. For this experiment, we set λF = 0.2
and εout = 10−4. We set η = 0.65, and the detected ranks
by RP are used as the rank estimations for the fixed-rank
methods, namely LRGeomCG, qGeomMC and LMaFIT.
Finally, we constrain the maximum rank for all methods to
100. For comparison, we report the testing RMSE of dif-
ferent methods over 10 random 80/20 train/test partitions
as explained in (Laue, 2012).

Comparison results are shown in Table 3. From the table,
we can observe that RP performs the best among all the
methods in terms of RMSE and computational efficiency.
It is worth mentioning that we use the rank detected by
RP as the rank estimation for LRGeomCG and qGeomMC.
Therefore, RP can be much faster than these two methods
if the cost of the model selection is considered.

Table 3. Experimental results on real-world datasets.
Dataset Movie-10M Netflix

RMSE Time (seconds) RMSE Time (seconds)
APG 1.096 1048±17 - -

LRGeomCG 0.824 338±11 0.867 3128±35
QgeomMC 0.850 189±7 0.880 3965± 74

Lmafit 0.837 307±1 0.875 3798±50
Lmafit-A 0.969 421±16 0.962 5286±165

RP 0.817 81±1 0.859 1332±27
* Result of APG on Netflix is absent due to out-of-memory issue. The stan-

dard variations of RMSE are not reported since they are not significant.
The average ranks estimated by APG, Lmafit-A and RP on Movie are 100,
77 and 10, respectively. The average ranks estimated by Lmafit-A and RP
on Netflix are 81 and 12, respectively.

Due to the absence of source codes, we record the
published results of GECO (Shwartz et al., 2011),
Jaggi’s method (Jaggi & Sulovsky, 2010) and Laue’s
method (Laue, 2012), on the Movie-10M dataset. The ex-
perimental settings of these methods reported in the liter-

atures are similar to ours, thus the comparison is fair. In
addition, we list the training time, the times of speedup,
RMSE and the CPU details in Table 4 for reference.

Table 4. Performance comparison on Movie-10M dataset.
Methods Time (in seconds) SpeedUp RMSE CPU(GHz)
GECO 784,941 9,000x 0.821 2.5
Laue 2,663 30x 0.815 2.5
Jaggi 3,120 38x 0.862 2.4
RP 81 – 0.817 2.8

From Table 4, we observe that on the Movie-10M dataset,
RP obtains comparable or better performance to the base-
line methods in terms of RMSE, but can achieve great
speedup with similar CPUs. Particularly, RP is orders of
magnitude faster than all the other methods. With these
comparisons, we can conclude that RP can achieve much
faster training speed over the comparison methods.

6. Conclusion
We propose a Riemannian Pursuit (RP) method for tackling
big MR problems. In contrast to nuclear-norm based meth-
ods, RP only needs to compute rank-ρ truncated SVD with
ρ very small per iteration, as opposed to APG which may
take hundreds of high-dimensional SVDs. By exploiting
the Riemannian geometry of the fixed-rank manifold, RP
uses a more efficient master solver. Moreover, RP increases
the rank of the matrix by ρ > 1 per iteration, thus it exhibits
good scalability for big MR problems with large ranks. Fi-
nally, RP automatically detects the rank with appropriate
stopping conditions, and performs well on ill-conditioned
problems. Extensive experimental results show that RP
achieves superb scalability and maintain similar or better
MR performance compared with state-of-the-art methods.
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